
Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

MULTI-GPU PROGRAM FOR UNCERTAINTY-AWARE DRAINAGE BASIN DELINEATION

– SCALABILITY BENCHMARKING WITH COUNTRY-WIDE DATASETS

Ville Mäkinen1, Tapani Sarjakoski1, Juha Oksanen1, Jan Westerholm2

1Finnish Geospatial Research Institute FGI,

National Land Survey of Finland,

Geodeetinrinne 2, FI-02430 Masala, Finland

ville.p.makinen@nls.fi, tapani.sarjakoski@nls.fi, juha.oksanen@nls.fi
2Åbo Akademi University, Faculty of Science and Engineering

FI-20014 Turku, Finland

jan.westerholm@abo.fi

ABSTRACT

Processing high-resolution digital elevation models (DEM)

can be tedious due to the large size of the data. In

uncertainty-aware drainage basin delineation, we apply a

Monte Carlo simulation that further increases the processing

demand by two to three orders of magnitude. Utilizing

graphics processing units (GPU) can speed up the programs,

but their on-chip RAM limits the size of DEMs that can be

processed efficiently on one GPU. Here we present a

parallel uncertainty-aware drainage basin delineation

algorithm and a multi-node GPU CUDA implementation

along with scalability benchmarking. All the computations

are run on the GPUs, and the parallel processes

communicate using Message Passing Interface (MPI) via the

host CPUs. The implementation can utilize any number of

nodes, with one or many GPUs per node. The performance

and scalability of the program have been tested with a 10 m

DEM covering 390905 km2, the entire area of Finland.

Performing the drainage basin delineation for the DEM with

different numbers of GPUs shows nearly linear strong

scalability.

Index TermsðGeospatial analysis, parallel computing,

GPU, MPI

1. INTRODUCTION

In uncertainty-aware geospatial analysis, we compute not

only the solution to a given problem, but also estimates of

the uncertainty of the solution [1]-[4]. Determining the

reliability of the analysis is important because in many cases

decisions are made based on the result of an analysis that

may have a significant economic impact or even affect

human lives. For example, issuing storm warnings will let

people prepare for approaching storms in time, but if the

predictions are not reliable the false alerts render the

warnings useless. When choosing a location for long-term

storage for nuclear waste, one wants to make sure that a

location the model predicts to be stable is not simply a

random artefact that moves or disappears with the slightest

change in the input data. Knowing the reliability of the

borders of the drainage basins [5], [6] will help proper

action to be taken e.g. in the case of accidents where toxic

material spills onto the ground. In general, knowledge of the

uncertainty of the result of an analysis indicates whether the

result can be trusted or if more accurate data or another

analysis method are required.

Although the foundation for uncertainty-aware

geospatial analysis is rather well established [1], [4], it has

received relatively little practical usage. This is partly

because the analysis of uncertainty is computationally very

demanding, for the implementations use Monte Carlo

simulations in which the underlying analysis is repeated

typically a thousand times, if not more [1]. It is evident that

carrying out uncertainty-aware geospatial analysis with

large datasets covering geographically extensive areas

pushes computation facilities to their limits.

Large computing clusters are nowadays common, but

programs and algorithms must be developed for parallel

execution in order to harness the available resources

efficiently. Unfortunately, the traditional software packages

that users in the application field of geographic information

systems (GIS) are used to do not benefit from powerful

computing clusters as well as they could [7-10]. For

example, in the GRASS GIS package only some of the

functionality supports parallelism [11]. In this paper we

have designed and implemented an uncertainty-aware

drainage basin delineation program that utilizes multiple

GPUs to speed up the calculations and to permit efficient

processing of large digital elevation models that do not fit

into the RAM of a regular workstation.

Some work has been reported where GPUs have been

utilized to speed up some common analyses [12-18].

However, they are typically limited to one GPU. This work

is continuation to the work reported in [18] where

preliminary benchmark calculations of a drainage

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

delineation program utilizing multiple GPUs were

presented. We have identified and analysed the main

bottlenecks of the implementation and developed the

algorithms further.

In the following sections, we describe the principles on

which the program is based to achieve good performance

and scalability. For benchmarking, we use a country-wide

digital elevation model covering 390905 km2, the area of

Finland, in 10 m resolution [19]. To our knowledge, this is

the first time that uncertainty-aware geospatial analysis has

been carried out for areas covering an entire country. In

addition, this was done in a single run.

Based on the benchmarking, we demonstrate that the

cost to compute uncertainty-aware drainage basin

delineations for country-wide datasets has been reduced to a

rather low level. We argue that we have reached a situation

in which cost alone is not sufficient a reason to neglect the

computation and presentation of uncertainty maps. These

statements are based on and apply to the drainage basin

delineation task. As will be discussed at the end, our

implementation could be used as a framework for other,

similar uncertainty-aware geospatial analysis tasks.

In our study, the motivation for fast, scalable

computing solutions is based on the need to produce

uncertainty maps and on the underlying Monte Carlo

simulation, which is a computationally intensive task. The

need for fast and scalable programs for geospatial analysis

is, though, much more generic: high-resolution data are

available in such volumes, velocities, and varieties that they

deserve to be called big geospatial data. Efficient utilization

of these data fundamentally depends on quick, on-demand

computations, in order to be able to produce timely inputs

for environmental decision-making processes. At the same

time, multi-GPU computing clusters are increasingly being

used for scientific and technical computing. In this respect,

the presented work can serve as a high performance

geocomputing demonstration on utilizing computing

resources efficiently.

2. DRAINAGE BASIN DELINEATION ALGORITHM

We begin by describing the process of uncertainty-aware

basin delineation and then outline the parallelization of the

task to multiple GPUs.

2.1 Basic drainage basin delineation algorithm

The drainage basin delineation algorithm is presented in

refs. [17], [18], [20], [21]. In short, the basic algorithm that

does not take the uncertainty of the DEM into account reads

the DEM and the stream data as the input, and provides the

borders of the drainage basins as the output. The principal

idea is to determine to which stream the surficial flow leads

from each cell. The basic algorithm consists of the following

parts, which are executed sequentially:

1. Burn the stream data into the DEM.

2. Fill the pits in the DEM.

3. Assign flow directions to the cells.

4. Trace the cells to the streams.

5. Extract the borders of the drainage basins.

The stream burning is needed because otherwise some

constructions, such as bridges, erroneously create obstacles

for the surficial water flow in the DEM-based flow model.

Small depressions in the DEM would stop the tracing of

cells to the streams, therefore the pit filling is used to fill

them, transforming them into flat areas. After this each cell

is assigned a flow direction based on the slope of the DEM

(the flat areas are handled separately). Finally, one can start

from any cell and end up in a stream by following the flow

directions. Knowing which stream each cell flows to makes

it easy to determine the borders of the drainage basins.

2.2. Uncertainty-awareness

As all measured data contains some uncertainty, so does the

DEM. The question that immediately arises is how much

this uncertainty affects the locations of the acquired borders

of the drainage basins. One way to take into account the

uncertainties in the DEM height values is to run the drainage

basin delineation program on the DEM several times, but

each time with a different realization of the DEM error

Figure 1: An example of the drainage basin borders

determined with and without taking the uncertainty of the

DEM data into account. (Background map: National Land

Survey of Finland, Basic map raster, 01/2015)

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

model added [4]. The realizations can be generated e.g.

using process convolution [6], [22]. In a nutshell, the

uncertainty-aware drainage basin delineation algorithm

looks like this:

1. Generate an error field of random values.

2. Convolve the error field to reach an a priori

specified spatial autocorrelation structure.

3. Add the error field to the original DEM.

4. Perform the basic drainage basin delineation

algorithm for the DEM with the error field added.

5. Add the delineation borders to previous results.

6. Repeat steps 1–5 the number of times specified by

the user (often in the range of 100–1000).

The results of each iteration are added cell-wise. After N

iterations, the probability that the cell is on the drainage

divide is the value of the cell divided by N. An example of a

probable catchment border is shown in Figure 1.

The procedure is a straightforward Monte Carlo (MC)

simulation, and the iterations are called MC iterations. The

downside is that none of the calculations inside the MC

iterations are reusable and the algorithm run time is

proportional to the number of MC iterations.

2.3. GPU implementation

In our program, all the algorithms described in sections 2.1

and 2.2 are implemented as CUDA kernels [23]. Some of

them (e.g. the random field generation) are easily

implemented to benefit greatly from the fine-grained

parallelism of the GPUs. If a thread, operating on one cell,

requires the output from other threads, they need to be

synchronized in order to avoid data races. This imposes

limitations on the design of the algorithms due to the fact

that separate thread blocks cannot be synchronized within

the CUDA framework. The basic features of the CUDA

implementations of the algorithms are explained in [17]

where a drainage basin delineation program using a single

GPU is reported. We used the implementation in [17] as our

starting point and modified the algorithms for multi-GPU

environments.

2.4. Parallelization using many GPUs

Incorporating multiple GPUs and using them in parallel is

achieved by dividing the DEM into rectangular partitions

(Figure 2). Each partition is extended by a region called halo

zone that is used to hold copies of the values from the

neighbouring partitions. In this way, large sections of the

partitions can be processed independently of other

partitions, and only the values at the boundary zones must

be communicated to the halo zones of the neighbouring

partitions. The most straightforward division method is to

divide the DEM into partitions of the same size and assign

one partition to each GPU, as shown in Figure 2.

The drawback of this method is that as the data is split

into smaller and smaller partitions, the ratio of the

circumference of the partitions to their area grows. At some

point, the overhead due to synchronization and MPI

communication will become comparable to the actual

execution time on the GPUs and thus will degrade the

scalability of the program. When this happens exactly is

highly dependent on the underlying hardware.

Another parallelization method would be to calculate

several MC iterations concurrently. This would be trivial to

implement because the individual MC iterations are

independent of each other. However, this work concentrates

on processing datasets that are so large that the memory of a

single GPU is insufficient, thus requiring multi-GPU

solutions.

3. MULTI-GPU PROGRAM FOR UNCERTAINTY-

AWARE DRAINAGE BASIN DELINEATION

When the drainage basin delineation program is executed,

the MPI processes allocate arrays of memory for the

partitions of the DEM and the stream data and for the

corresponding drainage areas. These arrays are kept in the

GPU memory throughout the program execution. We note

that they could be stored on the host RAM as well. In that

case more GPU RAM would be available for the temporary

data and the size of the partitions could be increased. The

downside is that the relatively slow transfer of data between

the host and the GPU RAM would be required for each MC

iteration.

Referring to the computation steps described in

sections 2.1 and 2.2, in each MC iteration, the random

number generation, the convolution of the random field, the

stream burning and the extraction of the borders of the

Figure 2: An example of dividing and assigning data in a

multi-node, multi-GPU environment. The boundary zone is

part of the local data and the partitions are extended with the

halo zones. The striped areas in Partition 1 show how the

boundary zone is distributed to the halo zones of Partitions

2, 3 and 4.

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

drainage basins all work in a similar manner: first the width

of the halo zones are chosen, then the local data is

processed, and finally the halo zones are updated with the

boundary values from the neighbours. For example, in the

case of the random field generation, the width of the halo

zones is the radius of the convolution filter reflecting the

range of the DEM error model’s spatial autocorrelation

range. Each cell needs to be processed only once and they

can be processed in any order. The common factor for these

algorithms is that when they are operating on a cell, they

only need values from the neighbouring cells inside a

predefined radius, which can be zero. In general, these kinds

of algorithms can be implemented efficiently for parallel

architectures. If the whole analysis consisted only of such

operations, it would be possible to divide the DEM into

small enough partitions and analyse them sequentially on a

single GPU; however, due to the highly non-local nature of

the pit filling, the flow routing of the flat areas and the flow

tracing algorithms we are required to process the entire

DEM simultaneously.

3.1. Parallel pit filling

A pit filling algorithm is needed because the input DEM

with the random field added contains small depressions that

will stop the tracing of the cells to the streams. The

algorithm transforms these depressions into flat areas so that

starting from any cell it is possible to reach a stream without

going uphill.

Compared to the algorithms mentioned above, the pit

filling algorithm is considerably more complex. Our

implementation is based on the single GPU implementation

introduced in [17], which starts by creating an auxiliary

elevation data array where the cells in the streams are

marked with zero elevation and others with infinity. The

cells in the streams are marked as active. Then the pit filling

CUDA kernels are launched to process the data. Each thread

that has an active cell assigned to it marks it as inactive,

then iterates over its neighboring cells and, when certain

conditions are met, lowers their auxiliary elevation values

and marks them as active. These kernels cannot finish the

algorithm in one run, so they need to be launched again and

again until none of the cells are marked as active [17]. Here,

in the multi-GPU context, we refer to this process as

performing local iterations until the algorithm has

converged locally.

With multiple GPUs, the difference to the single GPU

case is that after every local iteration the data in the

boundary zones may have been updated and the halo zones

need to be updated. The principal design of our multi-GPU

algorithm is shown in Figure 3. It consists of global

iterations in which the local iterations are first repeated at

maximum Nlimit times before updating the halo zones.

After receiving the data from the neighbours, the MPI

processes need to evaluate whether they have active cells to

process and report this information to all the other MPI

processes. The global iterations are performed until all the

MPI processes converge locally at the same time, i.e. until

the algorithm converges globally.

Note that an MPI process is not allowed to exit from

the algorithm after reaching local convergence. This is

because it may remain in a locally converged state for

several global iterations but then receive data from

neighbouring partitions that forces it to do processing again.

Forcing the updating of the halo zones after a fixed

number of local iterations, regardless of whether the

Figure 3: The design of the iterative pit filling and the flow

routing of the flat areas algorithms. The value of Nlimit
 is

chosen based on the hardware used.

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

algorithm has converged locally or not, helps to avoid

situations where a partition has crucial updated boundary

data that its neighbour requires to advance in its processing

but has to wait for the partition to reach a local convergence

before starting the communication. The optimal value of

Nlimit
 depends on the speed of the connection between the

nodes compared to the processing power of the GPUs. In

our simulations we used Nlimit = 5.

The pit filling algorithm works with multiple partitions

because the new (initially infinite) elevation values are

always lowered from the previous values and because of the

design of the algorithm it is impossible to lower them too far

down. Therefore, if some cells have been processed and

then lower values are received from the neighbouring

partitions, the cells will simply be reprocessed without the

need to keep track of and undo the previous work.

3.2. Parallel flow routing

The flow routing for non-flat and flat areas is performed

separately. For the non-flat areas, the flow direction is set to

the direction of the steepest descent using the D8 method

[24]. Then the halo zones are updated.

The nontrivial part is to assign flow directions to the

cells that are located in the filled pits. As these pit areas are

flat, the method mentioned above does not work. However,

the pit filling algorithm we use guarantees that for every flat

area, there is at least one cell that has its flow direction

outward from the area: a spill point. We have chosen to

assign the flow directions for the cells in the flat areas in

such a way that each cell flows to a spill point along the

shortest path within the flat area.

The flat-area flow direction algorithm starts by

creating an integer array. The cells in flat areas next to the

spill points are marked with one, then their neighbours with

two and so on. As in the pit filling, if lower values are

received from the neighbouring partitions, some cells need

to be reprocessed. Once each flat cell has been assigned its

final value the flow directions are set such that each cell

flows to the closest neighbour with a lower value.

The design shown in Figure 3 is also used to

implement the flow routing of the flat areas. If a flat area is

split by the partition division, the number of required global

iterations to reach global convergence increases.

3.3. Parallel flow tracing

With the help of the flow directions, the cells can be traced

to the streams or to global edges. When a cell is traced to a

stream, the cell is marked with the ID value of that stream.

The output is a grid with a stream ID at each cell point

indicating to which drainage basin the cell belongs.

The flow tracing algorithm presented in [17] is

designed for a single partition and does not work optimally

if the tracing of a cell leads to another partition. An example

case is shown in Figure 4a where the tracing of the cell

marked with red leads to another partition twice before

reaching a stream cell. In the first iteration only the upper

part of the left partition can be traced, in the second iteration

only the right partition can be traced, and in the third

iteration the rest of the left partition can be traced. The

demerit of the approach is that unless the destinations of the

tracings that do not reach a stream cell are recorded, e.g. the

chain starting from the red cell must be traced to the halo

zone three times. As the partition size grows both the

number of the tracings and their chain lengths grow, leading

to unnecessary work and a slower program.

In our approach we treat the flow directions as directed

links between the cells. First we divide the local area into

Figure 4: An example case where the flow tracing crosses the partition edges. The shaded columns mark the halo zones and the

red arrows indicate a change from the previous configuration. In a) the real flow route is shown for a single cell. In b) the flow

directions are reduced to directed links in 2×2 sub-areas, and subsequently in 4×4 areas in c). Subfigures d) and e) show the

iterative part of the algorithm where the links are traced for each cell in the local area (d) and the suitable values in the halo

zones are updated (e). In this example the algorithm finishes after one iteration and f) shows the final link configuration.

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

non-overlapping N × N sub-areas and reduce the flow

directions into links inside the sub-areas as shown in Figure

4b. Then the sub-areas are quadrupled and the links are

further reduced inside the larger sub-areas. This is continued

until the whole local area has been reduced (Figure 4c). A

natural choice for the initial sub-area size in the CUDA

implementation is the size of the thread block.

Only after the reduction step we consider the halo

zones and the neighbouring partitions. For each cell in the

local area we trace the links until either

¶ we reach a stream cell, in which case the starting cell

is linked to the found stream cell, or

¶ the tracing leads out of the partition, in which case

the starting cell is linked to the last cell in the chain

that is inside the partition.

This is depicted in Figure 4d. After this step the links in the

boundary zone are communicated to the neighbouring

partitions. Only the received links that point back to the

partition and that are different from the existing links in the

halo zone are updated (Figure 4e). This reduction and

communication cycle is repeated until the merged links are

the same as the links in the local data (Figure 4f).

After the reduction phase has converged the actual

tracing is performed. The cells that flow to a stream cell in

the same partition can be traced via a single link and are

marked with the ID of the stream. Then the halo zones are

updated and the cells without a stream ID are traced again.

This is repeated until every cell has been traced to a stream

or to a global edge.

3.4. Extracting the borders of the drainage basins

The borders of the drainage basins are extracted from the

output of the flow tracing algorithm simply by marking all

the cells that have a neighbour with a lower stream ID. The

extracted borders are then added to the border array

allocated at the beginning of program execution.

4. HIGH PERFORMANCE COMPUTING

ENVIRONMENT FOR TESTING AND EVALUATION

The program is written in C++ with NVIDIA CUDA

extensions [23]. MPI [25] is used for communication

between the processes running on the CPUs on the separate

nodes.

We are currently using the Bull supercomputer of CSC

– IT Center for Science Ltd., a non-profit computing centre

for universities and research institutes in Finland

(www.csc.fi). The Bull is a cluster with 38 nodes that are

connected by InfiniBand, each node furnished with two

NVIDIA K40 cards [26]. A single K40 card has 12 GB of

RAM, resulting in a total of 912 GB of GPU memory.

4.1. Single and multi-threaded CPU implementation

For comparison we have also implemented CPU versions of

the presented algorithms. The main difference to the GPU

versions is that the pit filling and the flow routing of the flat

areas are priority queue based rather than using a separate

raster to keep track of the cells that are to be processed next.

The algorithms are implemented only for a single thread

execution so in order to parallelize the computation for N

threads the area must be divided into N partitions. The

partitions are processed in parallel using OpenMP and the

communication between the nodes is handled via MPI.

The CPU program was benchmarked in Taito [27],

another cluster available at CSC. The Taito cluster includes

also “fat” computing nodes with large memory capacity.

This allows us to make such reference computations that the

whole test data resides on a singe node used e.g. for the fully

serial CPU implementation. All the computations were

performed on nodes with two Intel Haswell 12-core E5-

2690v3 processors, running at 2.6GHz.

5. TIMINGS

For benchmarking, we used the country-wide DEM of the

entire area of Finland, which is available in 10 m resolution

[19]. For our purposes, a bounding box of 55,000 × 114,000

grid cells was needed to cover the whole of Finland (shown

in Figure 5). With the current implementation, we need at

least ten NVIDIA K40 GPUs to process the data efficiently,

the GPU memory being the limiting factor. We used the

drainage basin delineation with 50 MC iterations as the

benchmark calculation. As the calculation environment

consisted of nodes with two GPUs on each node, we

Figure 5: Examples of data partitioning to a different

number of equivalent rectangular blocks. The outer box

shows the area for which the analysis was performed and the

grey the area for which elevation data exists. The subfigures

b) and c) show two possibilities for dividing the data into 18

partitions.

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

benchmarked our program using up to 20 nodes (40 GPUs).

This may be considered as a strong scaling test [28], [18].

A regular block of data can be divided into p partitions

simply in row-wise or column-wise order, i.e. into p × 1 or 1

× p partitions. There are more possibilities if p is not a prime

number. The optimal division depends on several factors. If

the communication between the partitions is slow,

minimizing the circumference of the partitions may result in

the fastest execution of the program. However, one partition

scheme may leave some partitions virtually empty and

others full of data (Figure 5b), while another scheme can

provide a more balanced solution (Figure 5c). A significant

imbalance in workload leads to longer execution times as

the GPUs assigned to the empty partitions are not actually

calculating anything. The partition schemes used and the

benchmark execution times are reported in Table 1.

To measure the scalability of the program, we need to

compare some characteristic values. Comparing the total

execution times is not ideal because they contain all the

activities that are needed only once at the beginning and at

the end of the analysis, including disk I/O, whose bandwidth

may vary noticeably. Also, comparing the individual MC

iterations is not meaningful because the random fields

generated are different in each benchmark calculation.

Therefore, we define the ideal execution time that we derive

from the average MC iteration time to be used as the metric

for the scalability of the program. We denote the average

MC iteration time using p GPUs with Tp
 and the

standard deviation with d Tp . These are obtained from

the log files of the benchmark calculations. With these

quantities, we can define the ideal execution time of the

analysis with N MC iterations using p GPUs as

 TN

p = N Tp , (1)

where N is the number of MC iterations used to calculate the

average MC iteration time. Standard deviation of the ideal

execution time is

 dTN

p = Nd Tp
. (2)

Since the MC iterations do not depend on each other, we can

join the standard deviations of the individual MC iterations

quadratically [26] above in the formula (2).

The speedup for an analysis with N MC iterations is

calculated from the ideal execution times using the equation

SN

p =
TN

10

TN

p

=
T10

Tp

. (3)

In an ideal case SN

p = p /10, since we here use ten GPUs

as our reference case. The fluctuations in the individual MC

iteration times will induce variations in the speedup

achieved as well. We can estimate this variation by applying

the general formula for error propagation [29] to the SN

p
.

This gives the standard deviation

dSN

p =
¶SN

p

¶T N

10

dT N

10

æ

è
çç

ö

ø
÷÷

2

+
¶Sp

N

¶Tp

N
dTp

N
æ

è
çç

ö

ø
÷÷

2

=
1

N

d T10

Tp

æ

è

ç
ç

ö

ø

÷
÷

2

+
T10

Tp

2
d Tp

æ

è

ç
ç

ö

ø

÷
÷

2
. (4)

These formulae show that the achieved speedup can vary

considerably with small numbers of MC iterations, but as

the number of iterations increases, the fluctuations in the

individual MC iterations average out.

Another commonly used quantity is the efficiency

Ep

N
, which in this case is defined as

EN

p = SN

p ×
10

p
=

10×T10

p×Tp

. (5)

Figure 6: The speedup as a function of the number of GPUs

for the analysis of the whole Finland, calculated from the

benchmark calculations with 50 MC iterations. The error

bars show the standard deviation for the derived speedups for

the analyses with 49 MC iterations.

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

A value close to one means that the scaling is efficient,

whereas a value closer to zero means inefficient scaling. The

standard deviation for the efficiency is given simply by

dEN

p =
10

p
dSN

p
. (6)

We excluded the first MC iteration and calculated the

average MC iteration time from the subsequent 49 iterations

of the benchmark calculations, as in the first MC iteration

the algorithms need to perform some initialization. The

average MC iteration times, their standard deviations and

the derived speedups and efficiencies are reported in

Table 1, and the derived speedup results are shown in

Figure 6. The scaling of the program is very close to ideal.

One source of variation is that the amount of imbalance in

the workload varies slightly with the number of GPUs used.

For comparison we performed 10 MC iterations using

the CPU version of the program first in a fully serial mode

and then parallelized over 2, 10, 24 and 48 threads. The

timings results are shown in Table 2. Again, the first MC

iteration was excluded from the calculation of the average

values. The values are calculated using the equations (3) -

(6) but using the case p=1 as the reference case. The CPU

implementation has not been optimized to the same extent

as its multi-GPU counterpart and it is possible that adjusting

the parameters such as the Nlimit
 shown in Figure 3 more

carefully could improve the scaling.

A direct comparison of the average MC iteration times

indicates that the multi-GPU program using e.g. 10 GPUs is

~100 times faster than the serial CPU version. In [17] the

single GPU program was found to be roughly 10 times

faster than the serial CPU program. Therefore the

comparison of multi-GPU program using 10 GPUs is

expected to be two orders of magnitude faster than the fully

serial CPU version, and our measurements fit into this

expectation well.

The early benchmarkings of our multi-GPU program

were reported in [18]. At that stage, the scalability for

multiple computing nodes was not ideal. In the current work

we have shown good, nearly linear scalability. Based on the

benchmarking results, we can estimate that using ten GPUs,

uncertainty-aware computation of a drainage basin

delineation, based on 1000 MC iterations would take about

12.6 h for the whole of Finland. With 40 GPUs, the

computing time is less than 3.3 h.

According to CSC’s pricing for academic and public

sector [30], GPU cost is 0,30 €/h. The cost for the job used

as a reference above (12.6 h on 10 GPUs) would be 38€. To

run the same job using our single core CPU implementation

would take 1640 h and the cost would be 36€, based on

CSC’s 0.022 €/h price for CPU core usage. For GPU

implementation cost is invariant with respect to the number

of GPUs, because the efficiently is always close to 1.0

(Table 1), whereas for CPU implementation the cost

increases when more cores are used, due to the decreasing

efficiency (Table 2).

6. CONCLUSIONS

In this work we have introduced improved methods for

reaching a better scalability in our uncertainty aware

drainage basin delineation program running on multiple

GPUs, reported in [18]. The test runs now show linear

scalability with respect to the number of GPUs used. In this

work we also compared the program with the reference

implementation using CPUs only. These tests confirmed our

expectations that use of GPUs speeds up processing at least

ten times compared to a single core CPU implementation.

Our comparison of the costs for running jobs either in

Table 1: The partitioning scheme, total execution times, average Monte Carlo iteration times Tp , their standard deviations d Tp

and derived speedup S49

p
 and efficiency E49

p
values with their uncertainties dS49

p
,dE49

p
, obtained from the 49 MC iterations of

the benchmark calculations with 50 MC iterations using p GPUs.

p 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Partitioning 2×5 2×6 2×7 2×8 2×9 2×10 2×11 2×12 2×13 2×14 2×15 2×16 2×17 2×18 2×19 2×20

Total time [s] 2312 1899 1666 1415 1273 1124 1019 936 885 834 755 721 673 640 600 589

Tp [s]
45.6 37.8 32.9 28.1 25.1 22.3 20.1 18.5 17.5 16.5 15.0 14.3 13.4 12.7 11.9 11.7

d Tp [s]
3.2 2.2 2.3 1.7 1.3 1.7 1.2 1.3 1.4 1.2 1.1 1.1 0.8 0.8 0.9 1.0

S49

p
- 1.21 1.39 1.63 1.82 2.05 2.27 2.46 2.61 2.76 3.04 3.19 3.41 3.60 3.85 3.90

dS49

p
- 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.04 0.05 0.06 0.06

E49

p
- 1.01 0.99 1.02 1.01 1.02 1.03 1.03 1.00 0.99 1.01 1.00 1.00 1.00 1.01 0.98

dE49

p
- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

GPU or CPU environments show that neither of the

environments offers any significant advantage in this sense.

From the point of view practical analysis tasks, we consider

the price tag of about 38 € for our reference job to be a

reasonable cost for tasks that have to be carried out only

occasionally. We also argue that we have reached a situation

in which the cost alone should not be a reason for neglecting

the computation and presentation of uncertainty maps.

Our benchmarks on scalability with a larger number of

GPUs indicate that our implementation would be able to

handle much larger datasets than the current 10 m resolution

DEM covering the whole of Finland. A larger capacity will

be needed in the future when high-resolution DEMs will be

available; according to plans, the NLS of Finland will have

a new laser scanning-based DEM with 2 m resolution

around 2020.

Regarding our implementation, there is still room for

improvement. As Figure 5 shows, the workload is not

balanced between the GPUs as some partitions have very

little data to process compared to some other partitions.

Depending on the shape of the computing block’s outline,

the situation can be even worse. More sophisticated methods

for data partitioning could be developed to improve the

situation in this respect.

In this work, the focus has been on performing

drainage basin delineation for large datasets efficiently

using high performance computing environments. However,

the ability to perform the same analysis interactively for

small areas is also important. Current GPUs have so much

computational resources that if the area to be processed is

small, a big part of those resources may be left unused. For

interactive use, performing several MC iterations in parallel

may provide additional speedup and bring interactive

uncertainty-aware geospatial analysis closer to reality.

Regarding future work, our program can also serve as

a model or framework for the implementation of programs

for other, similar uncertainty-aware geospatial analysis

tasks. Using Map Algebra terms, random number generation

is a local operation, whereas convolution, stream burning,

flow routing of the non-flat areas and border extraction are

focal operations with different neighbourhoods [31]. Pit

filling, flow routing of the flat areas and flow tracing

resemble global cumulative functions [32]. Therefore, it can

be foreseen that a computationally efficient and scalable

uncertainty-aware Map Algebra program could be

implemented using our algorithms as a starting point.

7. ACKNOWLEDGEMENTS

Funding from the Academy of Finland (grants 251987,

259557 and 259995) is gratefully acknowledged. In

addition, we are thankful to MSc David Eränen for the

initial implementation of several parts of the program.

8. REFERENCES

[1] S. Openshaw, M. Charlton, and S. Carver, “Error propagation:

A Monte Carlo simulation”, In: I. Masser, M. Blakemore, (Eds.),

Handling Geographical Information: Methodology and Potential

Applications, Longman, London, UK, 1991, pp. 78-101.

[2] G. Heuvelink and P. Burrough, “Propagation of errors in spatial

modelling with GIS,” International Journal of Geographical

Information Systems, vol. 3, no. 4, pp. 303–322, 1989.

[3] P. Fisher, “First experiments in viewshed uncertainty: The

accuracy of the viewshed area,” Photogrammetric Engineering and

Remote Sensing, vol. 57, no. 10, pp. 1321-1327, 1991.

[4] G. Heuvelink, Error Propagation in Environmental Modelling

with GIS, Taylor & Francis, London, UK, 1998.

[5] D. R. Miller and J. G. Morrice, “Assessing uncertainty in

catchment boundary delimitation.” Third International

Conference/Workshop on Integrating GIS and Environmental

Modeling, Santa Fe, NM, 21–26 January 1996. Available online at:

http://escholarship.org/uc/item/43x094z3. Accessed on: Feb. 26,

2016.

[6] J. Oksanen and T. Sarjakoski, “Error propagation analysis of

DEM-based drainage basin delineation,” International Journal of

Remote Sensing, vol. 26, no. 14, pp. 3085-3102, 2005,

doi:10.1080/01431160500057947

[7] ArcGIS, http://www.esri.com/software/arcgis. Accessed on:

March 8, 2016.

[8] QGIS, http://www.qgis.org. Accessed on: March 8, 2016.

Table 2: Timing results of the CPU implementation of the

drainage delineation algorithm, obtained from the computation

of 10 Monte Carlo iteration using p threads and partitions. The

case p=48 was computed using two nodes, other cases were

computed in a single node. The average values are calculated

from the last nine MC iterations.

p 1 2 10 24 48

Partitioning 1 1×2 2×5 2×12 2×24

Total time [s] 59506 34380 8973 4582 2426.5

Tp
 [s]

5904.9 3399.6 867.4 423.4 225.8

d Tp
 [s]

49.9 42.0 13.5 6.8 1.7

Sp

9

- 1.74 6.81 13.95 26.2

dSp

9

- 0.01 0.05 0.09 0.10

Ep

9

- 0.87 0.68 0.58 0.54

dEp

9

- 0.01 0.01 0.01 0.01

http://escholarship.org/uc/item/43x094z3
http://dx.doi.org/10.1080/01431160500057947
http://www.esri.com/software/arcgis
http://www.qgis.org/

Published article: V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm, “A Multi-GPU Program for Uncertainty-
Aware Drainage Basin Delineation: Scalability benchmarking with country-wide data sets”, IEEE Geoscience and
Remote Sensing Magazine, volume 4, issue 3, 2016, DOI: 10.1109/MGRS.2016.2561405

[9] Manifold GIS, http://www.manifold.net. Accessed on: March

8, 2016.

[10] GRASS GIS, http://grass.osgeo.org/#. Accessed on: Feb. 4,

2016.

[11] GRASS GIS wiki on parallelization:

http://grasswiki.osgeo.org/wiki/Category:Parallelization. Accessed

on: June 17, 2015.

[12] L. Ortega and A. Rueda, “Parallel drainage network

computation on CUDA,” Computers & Geosciences, vol. 36, pp.

171-178, 2010, doi:10.1016/j.cageo.2009.07.005

[13] C.-Z. Qin and L. Zhan, “Parallelizing flow-accumulation

calculations on graphics processing units – From iterative DEM

preprocessing algorithm to recursive multiple-flow-direction

algorithm,” Computers & Geosciences, vol. 43, pp. 7-16, 2012,

doi:10.1016/j.cageo.2012.02.022

[14] M. Steinbach and R. Hemmerling, “Accelerating batch

processing of spatial raster analysis using GPU,” Computers &

Geosciences, vol. 45, pp. 212-220, 2012,

doi:10.1016/j.cageo.2011.11.012

[15] A. Osterman, L. Benedicic and P. Ritosa, “An IO-efficient

parallel implementation of an R2 viewshed algorithm for large

terrain maps on a CUDA GPU,” International Journal of

Geographical Information Science, vol. 28, pp. 2304-2327, 2014,

doi:10.1080/13658816.2014.918319

[16] J. Zhang, S. You and L. Gruenwald, “Large-scale spatial data

processing on GPUs and GPU-accelerated clusters,” SIGSPATIAL

Special, vol. 6, pp. 27-34, 2014, doi:10.1145/2766196.2766201

[17] D. Eränen, J. Oksanen, J. Westerholm, and T. Sarjakoski, “A

full graphics processing unit implementation of uncertainty-aware

drainage basin delineation,” Computers & Geosciences, vol. 73,

pp. 48-60, 2014, doi:10.1016/j.cageo.2014.08.012

[18] V. Mäkinen, T. Sarjakoski, J. Oksanen, and J. Westerholm,

“Scalable uncertainty-aware drainage basin delineation program

using digital elevation models in multi-node GPU environments,”

Proceedings of the 2014 conference on Big Data from Space, pp.

267-270, doi:10.2788/1823

[19] Elevation model 10 m, National Land Survey of Finland,

http://www.maanmittauslaitos.fi/en/digituotteet/elevation-model-

10-m. Accessed on: June 17, 2015.

[20] S. K. Jenson and J. O. Domingue, “Extracting topographic

structure from digital elevation data for geographic information

system analysis,” Photogrammetric Engineering and Remote

Sensing, vol. 54, pp. 1593–1600, 1988.

[21] D. R. Maidment and W. K. Saunders, A GIS Assessment of

Nonpoint Source Pollution in the San Antonio - Nueces Coastal

Basin, Center for Research in Water Resources, University of

Texas, Austin, TX. 1996.

[22] H. J. Thiébaux and M. A. Pedder, Spatial Objective Analysis

with Applications in Atmospheric Science, Academic Press,

London, UK, 1987.

[23] NVIDIA CUDA Parallel Computing Platform,

http://www.nvidia.com/object/cuda_home_new.html. Accessed on:

March 4, 2016.

[24] J. F. O’Callaghan and D. M. Mark, “The extraction of

drainage networks from digital elevation data,” Computer Vision,

Graphics and Image Processing, vol. 28, pp. 323-344, 1984,

doi:10.1016/S0734-189X(84)80011-0

[25] Message Passing Interface (MPI) forum, http://www.mpi-

forum.org. Accessed on: Feb. 4, 2016.

[26] CSC - Bull B715 cluster, https://research.csc.fi/csc-s-

servers#bull. Accessed on: Feb. 4, 2016.

[27] CSC – Taito supercluster, https://research.csc.fi/csc-s-

servers#taito. Accessed on: Feb. 4, 2016.

[28] Sharcnet: Measuring Parallel Scaling Performance,

https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scalin

g_Performance. Accessed on: Feb. 4, 2016.

[29] John R. Taylor, An Introduction to Error Analysis, University

Science Books, 55D Gate Five Road, Sausalito, California, 1982.

[30] CSC, Pricing of Computing Services,

https://research.csc.fi/pricing-of-computing-services. Accessed on:

March 10, 2016.

[31] C. Dana Tomlin, GIS and Cartographic Modeling, Esri Press,

380 New York Street, Redlands, California, 1990.

[32] M. N. DeMers, GIS modeling in Raster, John Wiley & Sons,

Inc., 605 Third Avenue, New York, 2002.

http://www.manifold.net/
http://grass.osgeo.org/
http://grasswiki.osgeo.org/wiki/Category:Parallelization
http://dx.doi.org/10.1016/j.cageo.2009.07.005
http://dx.doi.org/10.1016/j.cageo.2012.02.022
http://dx.doi.org/10.1016/j.cageo.2011.11.012
http://dx.doi.org/10.1080/13658816.2014.918319
http://dx.doi.org/10.1145/2766196.2766201
http://dx.doi.org/10.1016/j.cageo.2014.08.012
http://dx.doi.org/10.2788/1823
http://www.maanmittauslaitos.fi/en/digituotteet/elevation-model-10-m
http://www.maanmittauslaitos.fi/en/digituotteet/elevation-model-10-m
http://www.nvidia.com/object/cuda_home_new.html
http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://www.mpi-forum.org/
http://www.mpi-forum.org/
https://research.csc.fi/csc-s-servers#bull
https://research.csc.fi/csc-s-servers#bull
https://research.csc.fi/csc-s-servers#taito
https://research.csc.fi/csc-s-servers#taito
https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance
https://www.sharcnet.ca/help/index.php/Measuring_Parallel_Scaling_Performance
https://research.csc.fi/pricing-of-computing-services

